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Abstract To understand the effects that the climate change has on the evolution of
species as well as the genetic consequences, we analyze an integrodifference equa-
tion (IDE) models for a reproducing and dispersing population in a spatio-temporal
heterogeneous environment described by a shifting climate envelope. Our analysis on
the IDE focuses on the persistence criterion, travelling wave solutions, and the inside
dynamics. First, the persistence criterion, characterizing the global dynamics of the
IDE, is established in terms of the basic reproduction number. In the case of persis-
tence, a unique travelling wave is found to govern the global dynamics. The effects
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of the size and the shifting speed of the climate envelope on the basic reproduction
number, and hence, on the persistence criterion, are also investigated. In particular, the
critical domain size and the critical shifting speed are found in certain cases. Numerical
simulations are performed to complement the theoretical results. In the case of per-
sistence, we separate the travelling wave and general solutions into spatially distinct
neutral fractions to study the inside dynamics. It is shown that each neutral genetic
fraction rearranges itself spatially so as to asymptotically achieve the profile of the
travelling wave. To measure the genetic diversity of the population density we calcu-
late the Shannon diversity index and related indices, and use these to illustrate how
diversity changes with underlying parameters.

Keywords Integrodifference equation · Persistence criterion · Travelling wave ·
Inside dynamics · Neutral genetic diversity · Diversity index

Mathematics Subject Classification 92D25 · 92D40 · 45G10 · 35C07 · 39A10

1 Introduction

Climate change is a serious threat to not only the survival of species but it is also
known to affect the intraspecific genetic diversity (Bálint et al. 2011). The range of a
species can be altered and shifted due to climate change (Parmesan 1996). In particular,
climate change can alter the distribution of genetic variants in space and time (Pauls
et al. 2013). Thus, it is important to understand how underlying biological processes
linked with the effect of climate change alter the genetic distribution of a species.

Mathematically, reaction–diffusion equations of the form

ut = uxx + f (x − ct, u), x ∈ R (1.1)

have been used to study the effect of climate change on the evolution of species as well
as its genetic consequences, where c > 0 is the shifting speed of the environment, and
f is the growth rate function taking the form

f (x, u) =
{
ru

(
1 − u

K

)
, x ∈ (0, L),

−du, x ∈ R\(0, L)

for some L > 0 characterizing the size of the climate envelope (Potapov and Lewis
2004; Berestycki et al. 2009). In the model (1.1), the climate envelope has size L and
shifts to the right with speed c, and therefore, the growth rate function f introduces a
special type of spatio-temporal heterogeneity. A fundamental question is whether the
species can survive in the presence of climate change. In terms of (1.1), it is equivalent
to ask about the long time behaviour of (non-negative) solutions of (1.1). In Berestycki
et al. (2009), the authors established the persistence criterion for (1.1) with more
general growth rate functions of Fisher-KPP type. More precisely, they showed that
solutions vanish as time elapses when the net reproduction number, defined to be the
generalized principal eigenvalue of the operator u �→ uxx + fu(x, 0)u, is non-positive.
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When the net reproduction number crosses zero, there exists a unique travelling wave
with speed c that attracts solutions. In the latter case, it is of great significance to
understand the genetic structure of the travelling wave and general solutions of (1.1).

The genetic structure of solutions of (1.1), although generally very complex, can
be understood for a simplified case where the wave is decomposed into a number of
neutral fractions that differ only with respect to their initial spatial location within the
wave front. The changes in the distribution and abundance of these neutral fractions
as the wave progresses gives insight as to the effect of the nonlinear spatial dynamics
on the genetic structure. The mathematical treatment of this problem, concerning the
inside dynamics (see e.g. Garnier et al. 2012; Roques et al. 2012; Bonnefon et al.
2014), namely, the dynamics of neutral fractions of the travelling wave and general
solutions, has been studied in Garnier and Lewis (2016).

When reaction–diffusion equations of the form (1.1) are used, it is implicitly
assumed that the dispersal of the species follows the normal distribution with zero
mean, which however is not the case for most species (see e.g. Lewis 1997). An alter-
native discrete-time continuous-space model often used in biological literature is the
following integrodifference equation (IDE):

un+1(x) =
∫
R

K (x − y)g(y − cn) f (un(y))dy, x ∈ R, (1.2)

which prescribes the density un+1(x) in the (n + 1)th generation given the density
in the nth generation through two stages: a sedentary stage and a dispersal stage.
An advantage of the IDE (1.2) over the reaction–diffusion equation (1.1) lies in the
fact that (1.2) can be used to model the spatial spread of long-distance dispersers,
while (1.1) is inappropriate in this situation.

In the IDE (1.2), the dispersal kernel K can be taken to be a Gaussian probability
density function, a Laplace function, or, indeed, any other probability density function.
Biologically, the dispersal kernel represents the probability that an individual moves
from location y to location x . The function f is a density-dependent growth function.
A typical example of f is the classical Beverton–Holt function (Beverton and Holt
1957)

f (u) = Ru

1 + (R−1)
K∗ u

, u ≥ 0 (1.3)

where R > 0 is the growth rate and K∗ > 0 is the carrying capacity. This growth
function is commonly used by biologists because it is a simple function that exhibits
negative density dependence. The function g is called the climate envelope or the
climate envelope function. When g is the indicator function over R, i.e., g ≡ 1 on
R, (1.2) becomes the classical and well-studied IDE:

un+1(x) =
∫
R

K (x − y) f (un(y))dy, x ∈ R. (1.4)

Population spread and travelling waves solutions have been widely studied for this
model. The reader is referred to Weinberger (1982), Lui (1982a, b, 1983, 1985), Kot
et al. (1996), Hsu and Zhao (2008), Li et al. (2009) and references therein for the
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investigation of spreading speeds and travelling waves, and to Marculis et al. (2017)
for the study of inside dynamics of (1.4). When g is the indicator function over the
interval

[− L
2 , L

2

]
, i.e., g(x) = 1[

− L
2 , L2

](x), we obtain a particular formof (1.2) that has

been previously studied in Zhou and Kot (2011). Their work focused on determining
the critical speed for extinction and the role that the dispersal and growth play in
persistence.

To summarize, the purpose of this endeavour is to understand the effects that cli-
mate change has on the dynamics of the IDE (1.2) with the focus on two fundamental
aspects: persistence criterion and inside dynamics. To perform the mathematical anal-
ysis of (1.2), we make the following assumptions throughout the paper.

(H) We make the following assumptions.
(1) The dispersal kernel K : R → (0,∞) is a continuous probability density

function.
(2) The growth function f : [0,∞) → [0,∞) is bounded, Lipschitz continuous

and increasing, and satisfies the following conditions:

f (0) = 0, f ′(0) > 1 and
f (u)

u
<

f (v)

v
for u > v > 0,

where f ′(0) denotes the right-derivative of f at 0.
(3) The climate envelope g : R → [0,∞) has an upper bound of 1 and is com-

pactly supported. Let I := supp(g) be a nonempty interval.
(4) The number c > 0 is the shifting speed of the environment or the climate

envelope.

As K is a probability density function,
∫
R
K (x) dx = 1 implies K (x) → 0 as

|x | → ∞, but we impose no condition on how fast K (x) decays as |x | → ∞. In
particular, the so-called fat-tailed kernels are allowed. A typical example satisfies the
assumptions on the growth function f is the Beverton–Holt function (1.3) with R > 1.
Our assumptions on the growth function excludes any Allee effect.

For the purpose of stating main results and performing analysis in this paper we
define the following spaces for convenience. Recall that I is a compact interval.

C(I ) = {u : I → R : u is continuous} ,

C+(I ) = {u ∈ C(I ) : u(x) ≥ 0, x ∈ I } ,

C++(I ) = {u ∈ C(I ) : u(x) > 0, x ∈ I } =
{
u ∈ C(I ) : min

x∈I u(x) > 0

}
.

The spaceC(I ) is equipped with the max norm ‖ ·‖C(I ). Clearly,C+(I ) is the positive
cone of C(I ) and C++(I ) is the interior of C+(I ). Also, we define

C(R) = {u : R → R : u is continuous} ,

C+(R) = {u ∈ C(R) : u(x) ≥ 0, x ∈ R} .
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Main results obtained in the present paper are roughly summarized in the following
theorem. We denote by {un}n∈Z0 an arbitrary solution of (1.2) with initial data u0 ∈
C+(R) being non-zero on I .

Theorem 1.1 The following statements hold.

(1) (Persistence criterion) Let R0 be the spectral radius of the operatorF0 : C(I ) →
C(I ) defined by

F0[w](x) = f ′(0)
∫
I
K (x − y + c)g(y)w(y)dy, x ∈ I, w ∈ C(I ).

Then,
– if R0 ≤ 1, un(x) → 0 uniformly in x ∈ R as n → ∞;
– if R0 > 1, then (1.2) admits a unique travelling wave {w∗(· − cn)}n∈Z such

that un(x + cn) → w∗(x) uniformly in x ∈ R as n → ∞.
(2) (Effects of the size of the climate envelope) Assume g(x) = 1[

− L
2 , L2

](x) for x ∈ R

and L > 0, and write R0 as R0(L). Then, the function L �→ R0(L) is bounded,
continuous and increasing on (0,∞), and satisfies limL→0+ R0(L) = 0. Set

R0(∞) := lim
L→∞ R0(L).

Then,
– R0(∞) ≤ 1 implies that R0(L) < 1 for all L > 0;
– R0(∞) > 1 implies the existence some L∗ > 0 such that R0(L) < 1 for

L ∈ (0, L∗) and R0(L) > 1 for L > L∗.
(3) (Effects of the shifting speed of the climate envelope) Assume K is a Gaussian

probability density function with mean μ ∈ R and variance σ 2 > 0, and K0 is a
Gaussian probability density function with mean 0 and variance σ 2. Then,

R0 = e− (c−μ)2

2σ2 r(F00),

where r(F00) is the spectral radius of the operator F00 : C(I ) → C(I ) defined
by

F00[w](x) = f ′(0)
∫
I
K0(x − y + c)g(y)w(y)dy, x ∈ I, w ∈ C(I ).

(4) (Inside dynamics) Suppose R0 > 1. Let v0 ∈ C+(R) be a portion of u0, that is,
0 � v0 ≤ u0. Consider the solution {vn}n∈N0 of

vn+1(x) =
∫
R

K (x − y)g(y − cn)
f (un(y))

un(y)
vn(y)dy, x ∈ R

with initial condition v0. Then there exists a constant p := p(v0) ∈ [0, 1] such
that

vn(x + cn) → pw∗(x) uniformly in x ∈ R as n → ∞.
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Moreover, if, in addition, v0 �≡ 0 on I , then p > 0. Suppose, in addition, that
u0 = w∗ and K is a Gaussian probability density function with mean μ ∈ R and
variance σ 2 > 0, then

p =
∫
I v0(x)g(x) f (w∗(x))e

2(c−μ)x
σ2 dx∫

I w∗(x)g(x) f (w∗(x))e
2(c−μ)x

σ2 dx
.

In our work, we begin by studying the persistence criterion for (1.2). The main
persistence results are laid out in Sect. 2. The effects of the size and the shifting speed
of the climate envelope on persistence of the population are considered in Sects. 2.3
and 2.4, respectively. In Sect. 2.5, numerical simulations are provided to increase the
clarity of theoretical results. We continue our analysis of (1.2) by investigating the
inside dynamics of (1.2). A formulation for the inside dynamics of (1.2) is presented
in Sect. 3. The analysis of the inside dynamics follows in Sects. 3.1 and 3.2. Section 3.3
finishes with a few numerical simulations exemplifying the theoretical results proven
earlier in the section. This paper concludes with a discussion of the theoretical and
numerical results in Sect. 4.

2 Persistence criterion

The purpose of this section is to study the persistence criterion for (1.2), namely, the
criterion classifying the global dynamics of (1.2). In Sect. 2.1, we derive an equivalent
problem and establish the persistence criterion for the equivalent problem. In Sect. 2.2,
we study the persistence criterion for (1.2). In Sects. 2.3 and 2.4, we investigate the
effects of the size of the climate envelope and the shifting speed of the environment,
respectively, on the persistence criterion. In Sect. 2.5, we provide some numerical
simulations to support our theoretical results.

2.1 Equivalent formalism and analysis

A fundamental question concerning (1.2) is whether a species, whose dynamics are
modelled by (1.2), can survive or not in the long run. In the presence of the climate
change, this question can be rephrased as whether the species can keep up with the
shift of the environment. This suggests to look for travelling waves of (1.2) with speed
c, the shifting speed of the climate envelope, and to study their properties, especially,
the stability.

Definition 2.1 An entire solution {un}n∈Z of (1.2) is called a travelling wave or a
travelling wave solution if there is a measurable function w : R → [0,∞) with
w � 0 such that

un(x) = w(x − cn), x ∈ R, n ∈ Z,

where c is the same as in (1.2). The function w is called a profile or a profile function.

Suppose {w(· − cn)}n∈Z is a travelling wave of (1.2). Inserting it into (1.2) results
in
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w(x − c(n + 1)) =
∫
R

K (x − y)g(y − cn) f (w(y − cn))dy

=
∫
R

K (x − cn − y)g(y) f (w(y))dy, x ∈ R, n ∈ Z.

The change of variable x → x + c(n + 1) gives

w(x) =
∫
R

K (x − y + c)g(y) f (w(y))dy, x ∈ R, (2.1)

which is the stationary equation for the profile w. Since g is compactly supported,
solving (2.1) for w is equivalent to solving the following equation

w(x) =
∫
I
K (x − y + c)g(y) f (w(y))dy, x ∈ I,

for w defined on I . This suggests to consider the following equation:

wn+1(x) = F[wn](x), x ∈ I, (2.2)

where the map F is defined by

F[w](x) =
∫
I
K (x − y + c)g(y) f (w(y))dy, x ∈ I.

Then, finding travelling waves of (1.2) is equivalent to finding non-trivial stationary
solutions of (2.2). For clarity, we give the following definition.

Definition 2.2 Ameasurable function w : I → [0,∞) is called a stationary solution
of (2.2) if it satisfies w = F[w]. A stationary solution w of (2.2) is called positive if
w �≡ 0.

To study the existence and non-existence of positive stationary solutions of (2.2),
we consider the linear operator F0 defined by

F0[w](x) = r0

∫
I
K (x − y + c)g(y)w(y)dy, x ∈ I,

where r0 = f ′(0). It is the linearization of F at w ≡ 0.
Clearly,F0 is a bounded linear operator onC(I ), and it is strongly positive, namely,

F0[C+(I )\{0}] ⊂ C++(I ). Moreover, it is easy to check that F0 is compact. There-
fore, we can apply the Kreı̌n–Rutman theorem (see e.g. Kreı̌n and Rutman 1948;
Takáč 1994) to F0 to conclude that the spectral radius of F0, denoted by r(F0), is
an algebraically simple eigenvalue with an associated eigenfunction φ0 ∈ C++(I ).
Also, if λ ∈ σ(F0), the spectrum of F0, then either λ = r(F0) or |λ| < r(F0). In
addition, if λ is an eigenvalue of F0 with an associated eigenfunction in C+(I )\{0},
then λ = r(F0). Set

R0 := r(F0).
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Clearly, R0 > 0. The number R0 is often referred to as the basic reproduction number.
By the assumptions on K and g, there holds R0 ≤ ‖F0‖ ≤ r0.

The main result in this subsection is summarized in the following theorem.

Theorem 2.3 The following statements hold.

(1) If R0 ≤ 1, then 0 is the unique stationary solution of (2.2). If R0 > 1, there
exists a unique positive stationary solution w∗ of (2.2). Moreover, supI w∗ ≤
supu∈[0,∞) f (u).

(2) Let {wn}n be a solution of (2.2) with initial condition w0 ∈ C+(I )\{0}. Then the
following statements hold.
(i) If R0 ≤ 1, then wn → 0 in C(I ) as n → ∞.
(ii) If R0 > 1, then wn → w∗ in C(I ) as n → ∞.

We point out that the Proof of Theorem 2.3 falls into the scope of abstract results
established in Zhao (1996). For self-completeness, we provide the elementary Proof
of Theorem 2.3 in “Appendix 4”.

2.2 Travelling waves and global dynamics

So far, we have been focusing on the equivalent problem (2.2). Let us now go back to
the IDE (1.2). We are interested in travelling waves of (1.2) (see Definition 2.1). By
the analysis at the beginning of Sect. 2.1, the profile function w for a travelling wave
of (1.2) satisfies (2.1), and therefore, the restriction of w on I completely determines
w. By Theorem 2.3, we obtain the following result concerning the existence and non-
existence of travelling waves, as well as the global dynamics of (1.2). Recall that w∗
is the unique positive stationary solution of (2.2) in the case R0 > 1.

Theorem 2.4 The following statements hold.

(1) If R0 ≤ 1, then (1.2) admits no travelling wave. If R0 > 1, then (1.2) admits a
unique travelling wave {w∗(· − cn)}n∈Z, where

w∗(x) =
∫
I
K (x − y + c)g(y) f (w∗(y))dy, x ∈ R. (2.3)

In particular, w∗ ∈ C+(R)\{0} and satisfies w∗(x) → 0 as |x | → ∞.
(2) Let {un}n be a solution of (1.2) with initial condition u0 ∈ C+(R) being non-zero

on I . Then the following statements hold.
(i) If R0 ≤ 1, then un(x) → 0 uniformly in x ∈ R as n → ∞.
(ii) If R0 > 1, then un(x) → w∗(x − cn) uniformly in x ∈ R as n → ∞.

Proof (1) In the case of R0 ≤ 1, if there is a travelling wave of (1.2), then (2.2) admits
a positive stationary solution, which contradicts to Theorem 2.3.

If R0 > 1, then it is easy to see thatw∗ is a profile for a travelling wave and satisfies
required properties. The uniqueness of travelling waves in this case follows readily
as the existence of another travelling wave gives a second positive stationary solution
of (2.2), which contradicts Theorem 2.3.

123



Integrodifference equations in the presence of climate…

(2) Note that the solution {un}n satisfies

un+1(x + c(n + 1)) =
∫
I
K (x − y + c)g(y) f (un(y + cn))dy, x ∈ R.

It follows fromTheorem2.3(2) that the sequence {un(·+cn)}n restricted to I converges
in C(I ) to 0 when R0 ≤ 1 and to w∗ when R0 > 1 as n → ∞.

Now, if R0 ≤ 1, then

sup
x∈R

un+1(x + c(n + 1)) ≤ sup
x∈R

∫
I
K (x − y + c)g(y) f (un(y + cn))dy

≤
[
sup
x∈R

∫
I
K (x − y + c)g(y)dy

]
f ′(0)‖un(· + cn)‖C(I )

→ 0 n → ∞.

If R0 > 1, then

sup
x∈R

∣∣un+1(x + c(n + 1)) − w∗(x)
∣∣ ≤ sup

x∈R

∫
I
K (x − y + c)g(y)| f (un(y + cn))

− f (w∗(y))|dy
≤

[
sup
x∈R

∫
I
K (x − y + c)g(y)dy

]
Lip( f )‖un(· + cn) − w∗‖C(I )

→ 0 n → ∞,

where Lip( f ) is the Lipschitz constant of f .
This completes the proof. ��

We end this subsection by making some remarks about Theorem 2.4.

Remark 2.5 By (2.3) and the equation satisfied by w∗, we have w∗(x) = w∗(x) for
x ∈ I . In Theorem 2.4 (2), the value of the initial data u0 on R\I is irrelevant as the
climate envelope g is supported on I . In particular, if u0 ≡ 0 on I , then un ≡ 0 for
all n ≥ 1. Moreover, the conclusions of Theorem 2.4 (2) are valid for measurable
initial data, since u1 is always continuous and can be treated as the new initial data.
This provides theoretical supports for our simulations done later, where initial data is
chosen to be discontinuous functions such as indicator functions over intervals.

A full version of Theorem 2.4 (2) reads as follows: Let {un}n be a solution of (1.2)
with initial condition u0 : R → [0,∞) being measurable. If u0 = 0 a.e. on I , then
un ≡ 0 for all n ≥ 1. Otherwise, the following statements hold.

(i) If R0 ≤ 1, then un(x) → 0 uniformly in x ∈ R as n → ∞.
(ii) If R0 > 1, then un(x) → w∗(x − cn) uniformly in x ∈ R as n → ∞.
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2.3 Effects of the size of the climate envelope

In this subsection, we assume

g(x) = gL(x) = 1[− L
2 , L2 ](x), x ∈ R, (2.4)

and study the influence of L on the basic reproduction number, and hence, on the
persistence criterion. To indicate the L-dependence, the operator F0 is written as
F0,L :

F0,L [w](x) := r0

∫
IL

K (x − y + c)w(y)dy, x ∈ IL :=
[
− L

2
,
L

2

]
,

and the basic reproduction number R0 is written as R0(L). We prove the following
result.

Theorem 2.6 Let g = gL be as in (2.4). Then the following statements hold.

(1) The function L �→ R0(L) is continuous and increasing on (0,∞).
(2) There holds the limit

lim
L→0+ R0(L) = 0.

(3) Set
R0(∞) := lim

L→∞ R0(L).

Then,
(i) if R0(∞) ≤ 1, then R0(L) < 1 for all L > 0;
(ii) if R0(∞) > 1, then there exists L∗ > 0 such that R0(L) < 1 for L ∈ (0, L∗)

and R0(L) > 1 for L > L∗.

Proof (1) We first prove the monotonicity. Let 0 < L1 < L2. For i = 1, 2, let
φLi ∈ C++(ILi ) be an eigenfunction of F0,Li associated to R0(Li ). We may choose
φL1 and φL2 so that

φL1(x) ≤ φL2(x), x ∈ IL1 (2.5)

and
φL1(x0) = φL2(x0) for some x0 ∈ IL1 . (2.6)

It follows from (2.5) that

R0(L1)φL1(x0) = F0,L1 [φL1](x0)
= r0

∫
IL1

K (x0 − y + c)φL1(y)dy

≤ r0

∫
IL1

K (x0 − y + c)φL2(y)dy

< r0

∫
IL2

K (x0 − y + c)φL2(y)dy
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= F0,L2 [φL2 ](x0)
= R0(L2)φL2(x0).

Applying (2.6), we conclude R0(L1) < R0(L2). This proves the monotonicity of the
function L �→ R0(L).

Next, we prove the continuity. Fix any L0 > 0 and 0 < ε0 � 1, and let {Ln}n ⊂
(L0 − ε0, L0 + ε0) be such that Ln → L0 as n → ∞. By the monotonicity proven
above, {R0(Ln)}n ⊂ (R0(L0 − ε0), R0(L0 + ε0)). For each n, let φn ∈ C++(ILn ) be
an eigenfunction of F0,Ln associated to R0(Ln) and satisfy the normalization

φn(0) = 1, ∀n. (2.7)

We claim that
M := sup

n
‖φn‖C(ILn ) < ∞. (2.8)

In fact, from the equation F0,Ln [φn] = R0(Ln)φn , we deduce

R0(Ln) = R0(Ln)φn(0) = r0

∫
ILn

K (−y + c)φn(y)dy

≥ r0

[
min
y∈ILn

K (−y + c)

] ∫
ILn

φn(y)dy.

Since clearly M̃ := infn miny∈ILn K (−y + c) > 0, we find

sup
n

∫
ILn

φn(y)dy ≤ sup
n

R0(Ln)

r0M̃
≤ R0(L0 + ε0)

r0M̃
. (2.9)

It then follows that

R0(Ln)‖φn‖C(ILn ) = r0 max
x∈ILn

∫
ILn

K (x − y + c)φn(y)dy

≤ r0

[
max
x∈ILn

max
y∈ILn

K (x − y + c)

] ∫
ILn

φn(y)dy.

Since
sup
n

max
x∈ILn

max
y∈ILn

K (x − y + c) < ∞,

we conclude (2.8) from R0(Ln) ≥ R0(L0 − ε0) for each n and (2.9).
We further claim that {φn}n are equi-continuous in the sense that

∀ε > 0, there exists δ = δ(ε) > 0 such that

|φn(x) − φn(y)| < ε whenever x, y ∈ ILn , |x − y| < δ for all n. (2.10)
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Indeed, for x, y ∈ ILn , there holds

|φn(x) − φn(y)| ≤ r0

∫
ILn

|K (x − z + c) − K (y − z + c)|φn(z)dz

≤ r0M
∫
ILn

|K (x − z + c) − K (y − z + c)|dz,

which leads to (2.10).
Now, by (2.8), (2.10) and the Arzelà-Ascoli theorem, there exist a subsequence of

{φn}n , denoted by {φnk }k , and a function φ∞ ∈ C(I oL0
) (where I oL0

is the interior of
IL0 ) with φ∞ ≥ 0 such that φnk (x) converges to φ∞(x) locally uniformly in x ∈ I oL0

as
k → ∞. Moreover, the normalization (2.7) ensures that φ∞(0) = 1 and (2.8) implies
that φ∞ is bounded on I oL0

. Also, the equations satisfied by {φn}n give

R̃0(L0)φ∞(x) = r0

∫
IL0

K (x − y + c)φ∞(y)dy, x ∈ I oL0
, (2.11)

where R̃0(L0) := limk→∞ R0(Lnk ), which is well-defined by choosing a further
subsequence if necessary. Using (2.11), we can first extend φ∞ to be defined as a
continuous function, still denoted by φ∞, on IL0 so that (2.11) is true for all x ∈ IL0 .
Then, it is easy to see that φ∞ ∈ C++(IL0), which together with the Kreı̌n–Rutman
theorem yield R̃0(L0) = R0(L0). Hence, limk→∞ R0(Lnk ) = R0(L0).

So far, we have shown that for any sequence {Ln}n such that Ln → L0 as n → ∞,
there is a subsequence {Lnk }k ⊂ {Ln}n such that R0(Lnk ) → R0(L0) as k → ∞.
From this, we conclude the continuity of the function L �→ R0(L) at L = L0. Since
L0 is arbitrary, the continuity of L �→ R0(L) follows.

(2) We see that

‖F0,L [w]‖C(IL ) ≤ r0

[
max
x∈IL

∫
IL

K (x − y + c)dy

]
‖w‖C(IL ),

which implies that

R0(L) ≤ ‖F0,L‖ ≤ r0

[
max
x∈IL

∫
IL

K (x − y + c)dy

]

≤ r0

∫ L+c

−L+c
K (y)dy → 0 as L → 0+.

Hence, limL→0+ R0(L) = 0.
(3) It is a simple consequence of (1) and (2).
This completes the proof. ��
Next, we calculate R0(∞) in the case of K being a Gaussian probability density

function, namely,

K (x) = 1√
2πσ

e− (x−μ)2

2σ2 , x ∈ R (2.12)
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for some σ > 0 and μ ∈ R. Let

K0(x) = 1√
2πσ

e− x2

2σ2 , x ∈ R. (2.13)

Theorem 2.7 Let g = gL be as in (2.4) and K be as in (2.12). Then

R0(∞) = e− (c−μ)2

2σ2 r0.

Proof We need the following result (to be established in Theorem 2.8 below):

R0(L) = e− (c−μ)2

2σ2 r0r(FL), (2.14)

where r(FL) is the spectral radius of the operator FL : C(I ) → C(I ) defined by

FL [w](x) =
∫
IL

K0(x − y)w(y)dy, x ∈ IL .

Using (2.14), we only need to show that

lim
L→∞ r(FL) = 1. (2.15)

To prove (2.15), we first present the following classical variational formula for
r(FL), that is,

r(FL) = sup
w∈L2(IL )\{0}

〈FL [w], w〉L2(IL )

‖w‖2
L2(IL )

= sup
w∈L2(IL )\{0}

∫
IL

∫
IL

K0(x − y)w(y)w(x)dydx∫
IL

w(x)2dx
.

We refer the reader to Donsker and Varadhan (1975) for the proof, which requires the
self-adjointness of FL .

Next, we choose w ≡ 1 on IL as a test function to find

r(FL) ≥ 1

L

∫ L
2

− L
2

∫ L
2

− L
2

K0(x − y)dydx . (2.16)

We claim that for each ε > 0 there exists Lε > 0 such that

∫ L
2

− L
2

∫ L
2

− L
2

K0(x − y)dydx ≥ (1 − ε)(L − Lε), ∀L > Lε . (2.17)
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In fact, for each ε > 0 there exists Lε > 0 such that
∫ Lε

2

− Lε
2
K0(x)dx ≥ 1 − ε. Now,

for L > Lε , we have for each x ∈
[
− L

2 + Lε

2 , L
2 − Lε

2

]
∫ L

2

− L
2

K0(x − y)dy ≥
∫ Lε

2 +x

− Lε
2 +x

K0(x − y)dy ≥ 1 − ε.

It then follows that

∫ L
2

− L
2

∫ L
2

− L
2

K0(x − y)dydx ≥
∫ L

2

− L
2

(1− ε)1[
− L

2 + Lε
2 , L2 − Lε

2

](x)dx = (1− ε)(L − Lε).

This proves (2.17).
Finally, by (2.16) and (2.17), we find that for each ε > 0, there exists Lε > 0 such

that

r(FL) ≥ (1 − ε)
L − Lε

L
, L > Lε .

Setting L → ∞ in the above inequality, we find for each ε > 0,

lim inf
L→∞ r(FL) ≥ (1 − ε).

Thus, lim infL→∞ r(FL) ≥ 1. As clearly r(FL) ≤ 1 for all L > 0, we arrive at (2.15)
and hence complete the proof. ��

2.4 Effects of the shifting speed

In this subsection, we investigate the influence of the shifting speed c of the environ-
ment on the basic reproduction number, and hence, on the persistence criterion, in the
case of K being a Gaussian probability density function as in (2.12). We prove the
following result.

Theorem 2.8 Let K be as in (2.12) and K0 be as in (2.13). Then

R0 = e− (c−μ)2

2σ2 r(F00),

where r(F00) is the spectral radius of the operator F00 : C(I ) → C(I ) defined by

F00[w](x) = r0

∫
I
K0(x − y)g(y)w(y)dy, x ∈ I.

In particular, the following statements hold.

(1) If r(F00) ≤ 1, then R0 ≤ 1 for all c > 0.

(2) If r(F00) > 1, μ ≤ 0 and e− μ2

2σ2 r(F00) ≤ 1, then R0 ≤ 1 for all c > 0.
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(3) If r(F00) > 1, μ ≤ 0 and e− μ2

2σ2 r(F00) > 1, then there exists c∗ > 0 such that
R0 > 1 for c ∈ (0, c∗) and R0 ≤ 1 for c ≥ c∗.

(4) If r(F00) > 1 and μ > 0, then there exist 0 ≤ c1∗ < c2∗ < ∞ such that R0 > 1
for c ∈ (c1∗, c2∗) and R0 ≤ 1 for c ∈ (0, c1∗] ∪ [c2∗,∞).

Proof Let φ0 ∈ C++(I ) be the eigenfunction of F0 associated to the eigenvalue R0.
Then there holds the identity

R0φ0(x) = r0

∫
I
K (x − y + c)g(y)φ0(y)dy

= r0

∫
I

1√
2πσ

e− (x−y+c−μ)2

2σ2 g(y)φ0(y)dy

= r0e
− (c−μ)x

σ2 e− (c−μ)2

2σ2

∫
I
K0(x − y)g(y)

[
e

(c−μ)y
σ2 φ0(y)

]
dy, x ∈ I.

Multiplying the above equation by e
(c−μ)x

σ2 e
(c−μ)2

2σ2 , we find

R0e
(c−μ)2

2σ2 e
(c−μ)x

σ2 φ0(x) = r0

∫
I
K0(x − y)g(y)

[
e

(c−μ)y
σ2 φ0(y)

]
dy, x ∈ I.

In terms of the operator F00, the above equality reads

R0e
(c−μ)2

2σ2 e
(c−μ)x

σ2 φ0(x) = F00

[
e

(c−μ)·
σ2 φ0

]
(x), x ∈ I. (2.18)

Note that the function x �→ e
(c−μ)x

σ2 φ0(x) belongs to C++(I ). Since clearly F00 is
strongly positive and compact, we apply the Kreı̌n–Rutman theorem to conclude that

R0e
(c−μ)2

2σ2 = r(F00), which leads to the result. ��

Consider the Eq. (1.2) with K being a Gaussian probability density function as
in (2.12). In the caseμ = 0, this equation is more or less a time-discrete version of the
reaction–diffusion equation (1.1). In this case, either extinction occurs for all shifting
speed, or there is a critical shifting speed separating extinction and persistence.

In the case μ �= 0, the equation can be used to study the extinction or persistence
of a stream-dwelling species under climate change. Theorem 2.8 (3) says that if the
stream drives the species to disperse to the left, then the species can only survive when
the climate envelope shifts to the right with a relatively slow speed. If the stream drives
the species to disperse to the right as in Theorem 2.8 (4), then the species dies out
when the climate envelope shifts too slow or too fast to the right. In the former case,
the species misses the climate envelope, while in the latter case, the species can not
keep up with the shifting climate envelope.
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2.5 Persistence numerical simulations

In this subsection, we consider some numerical simulations of a simple example to
complement the analytical results proven earlier for the persistence criterion. To do so,
we first decide on the functional forms for the dispersal kernel, the growth function,
and the climate envelope function that satisfy the hypotheses laid out in (H) in Sect. 1.
For the dispersal kernel, K , we consider the Gaussian dispersal kernel

Kg(x) = 1√
2πσ 2

e− (x−μ)2

2σ2 , x ∈ R,

where μ represents the mean dispersal distance and σ 2 is the variance in the dispersal
distance. Here we use the subscript g to stand for Gaussian so as to distinguish it from
other dispersal kernels used later. For the growth function, f , we use theBeverton–Holt
function,

f (u) = Ru

1 + (R−1)
K∗ u

, u ≥ 0,

where R is the growth rate and K∗ is the carrying capacity. The climate envelope, g,
is assumed to be an indicator function on

[− L
2 , L

2

]
. That is,

g(x) = 1[
− L

2 , L2

](x), x ∈ R.

Since g is identically one in the interval
[− L

2 , L
2

]
and zero elsewhere this means

that the suitable habitat for the population is simply the interval
[− L

2 , L
2

]
. Then, the

IDE provided in (1.2) with a Gaussian dispersal kernel, an indicator climate envelope
function, and a Beverton–Holt growth function becomes

un+1(x) =
∫ L

2 +cn

− L
2 +cn

1√
2πσ 2

e− (x−y−μ)2

2σ2
Run(y)

1 + (R−1)
K∗ un(y)

dy, x ∈ R. (2.19)

All numerical simulations were performed using the fast Fourier transform tech-
nique (Powell 2001). This method speeds up the process of quadrature from O(n2) to
O(n log(n)) where n is the number of spatial mesh points. This is done by using the
convolution theorem after applying the Fourier transform. The numerical simulations
in Fig. 1 provide two examples of typical behaviour for (2.19). Figure 1b shows that for
small values of c, the population persists and approaches a travelling wave. Figure 1a
shows that when c becomes too large, then the population is not able to keep pace with
the shifting climate envelope and the population becomes extinct. These simulations
depict the persistence theorem provided in Theorem 2.4. There is similar behaviour
for the size of the shifting climate envelope. That is, if the length of the shifting climate
envelope is too small then the population cannot persist. We provide a plot showing
the region of persistence dependent on the speed (c) and length (L) of the climate
envelope. To do this, we numerically approximate the dominant eigenvalue of
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Fig. 1 A numerical simulation for (2.19). In the two simulations we use the following parameter values:
R = 1.5, K∗ = 1, μ = 0, σ 2 = 0.02, and L = 1. We vary the speed of the shifting habitat from a
c = 0.125, to b c = 0.05

λφ(x) = r0

∫
I
K (x − y + c)g(y)φ(y) dy, x ∈ I. (2.20)

If we again assume the same habitat shifting function as done in the previous example,
then (2.20) becomes

λφ(x) = r0

∫ L
2

− L
2

K (x − y + c)φ(y) dy, x ∈
[
− L

2
,
L

2

]
. (2.21)

To numerically approximate the spectral radius of (2.21), we use the Nyströmmethod.
That is, we approximate the integral using the trapezoid rule. Then, our problem
becomes

λφ(xi ) = r0
L

2(N − 1)

N−1∑
j=1

[
K (xi − y j + c)φ(y j ) + K (xi − y j+1 + c)φ(y j+1)

]
.

(2.22)
for i = 1, . . . , N . By letting

Ai1 = r0
L

2(N − 1)
K (xi − y1 + c), (2.23)

Ai j = r0
L

N − 1
K (xi − y j + c), for 2 ≤ j ≤ N − 1, and (2.24)

AiN = r0
L

2(N − 1)
K (xi − yN + c), (2.25)

we obtain the following linear system

λφ = Aφ, (2.26)

where A = (Ai j )1≤i, j≤N . From this point, we can now calculate the spectral radius
by using standard matrix techniques since we have reduced the problem from infinite
to finite-dimensional.
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Fig. 2 A contour plot for the spectral radius of (2.21). The solid and dashed curves are the level sets for
R0(c, L) = 1 for the Gaussian and Laplace dispersal kernels respectively. In these simulations we use the
following parameter values, r0 = 1.5, σ 2 = 0.02, b = 0.1 and a μ = 0 b μ = 0.2. These parameters were
chosen so that both dispersal kernels have the same mean and variance

For comparison in our simulations we also consider a Laplace dispersal kernel

Kl(x) = 1

2b
e−|x−μ|/b, x ∈ R,

where μ is the mean and 2b2 is the variance. Here, the subscript l stands for Laplace.
In Fig. 2, we find the dominant eigenvalue of (2.26) by varying the size and the

shifting speed of the climate envelope. The solid (resp. dashed) curve is the level set
for R0(c, L) = 1 with a Gaussian (resp. Laplace) dispersal kernel. From Fig. 2a, b,
if we fix c, we can see that there is a minimum length of the climate envelope to
obtain persistence. This agrees with the result proven in Theorem 2.6. there exists a
critical value of L , L∗ > 0, such that R0(L) ≤ 1 for L ∈ (0, L∗] and R0(L) > 1 for
L > L∗. This critical value, L∗, is called the critical domain size. By fixing L , Fig. 2a,
b illustrate the results of Theorem 2.8. In particular, Figure 2a shows statement (3)
of Theorem 2.8 that there is a critical value of c, c∗, such that R0 > 1 if c ∈ (0, c∗)
and R0 ≤ 1 for c ≥ c∗. Figure 2b provides a numerical example for statement (4) of
Theorem 2.8. That is, there exist 0 ≤ c1∗ < c2∗ < ∞ such that R0 > 1 for c ∈ (c1∗, c2∗)
and R0 ≤ 1 for c ∈ (0, c1∗] ∪ [c2∗,∞). The plots in Fig. 2 also suggest that the results
proven in Theorem 2.8 should also hold for the Laplace kernel.

3 Inside dynamics

We study the inside dynamics of (1.2) when R0 > 1. Let us consider an arbitrary
solution {u∗

n}n of (1.2) with initial condition u∗
0 ∈ C+(R) being non-zero on I . By

Theorem 2.4(2), u∗
n(x) → w∗(x − cn) uniformly in x ∈ R as n → ∞, where

{w∗(· − cn)}n∈Z is the unique travelling wave of (1.2) given in Theorem 2.4(1).
To study the inside dynamics of {u∗

n}n , we separate it into different neutral fractions
as follows: let

u∗
0 =

N∑
i=1

vi0,
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where N ≥ 1 and vi0 ∈ C+(R)\{0} for each i = 1, . . . , N . For each i = 1, . . . , N , let
us consider the solution {vin}n of

vin+1(x) =
∫
R

K (x − y)g(y − cn)h(u∗
n(y))v

i
n(y)dy, x ∈ R,

with initial condition vi0, where

h(u) =
{
f ′(0), u = 0,
f (u)
u , u > 0.

By the uniqueness of solutions, it is easy to see that u∗
n = ∑N

i=1 vin for all n ∈ N0.
We are interested in asymptotic behaviours of vin as n → ∞ for each i . Here, we

consider two cases about the solution {u∗
n}n or the initial condition u∗

0.

– Special case: u∗
0 = w∗ so that u∗

n = w∗(· − cn) for n ∈ N0;
– General case: a general initial condition u∗

0 ∈ C+(R) being non-zero on I .

These two cases are investigated in Sects. 3.1 and 3.2, respectively. In Sect. 3.3, we
provide numerical evidence.

3.1 Inside dynamics of the travelling wave

We first investigate the case of u∗
n = w∗(· − cn) for n ∈ N0. We prove the following

theorem.

Theorem 3.1 Suppose R0 > 1. Let v0 ∈ C+(R) be a portion of w∗, that is, 0 � v0 ≤
w∗. Consider the solution {vn}n of

vn+1(x) =
∫
R

K (x − y)g(y − cn)h(w∗(y − cn))vn(y)dy, x ∈ R (3.1)

with initial condition v0. Then there exists a constant p := p(v0) ∈ [0, 1] such that

vn(x + cn) → pw∗(x) uniformly in x ∈ R as n → ∞.

Moreover, if, in addition, v0 �≡ 0 on I , then p > 0.

We remark that the constant p = p(v0) in the statement of Theorem 3.1 can be
determined in an implicit way [see (3.5) below].

Proof (Proof of Theorem 3.1) Weassume v0 �≡ 0 on I , otherwise vn ≡ 0 for all n ≥ 1.
In the moving frame, (3.1) can be written as

vn+1(x + c(n + 1)) =
∫
R

K (x − y + c)g(y)h(w∗(y))vn(y + cn)dy, x ∈ R.
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Therefore, wn := vn(· + cn) satisfies

wn+1(x) =
∫
R

K (x − y + c)g(y)h(w∗(y))wn(y)dy, x ∈ R.

In particular,

wn+1(x) =
∫
I
K (x − y + c)g(y)h(w∗(y))wn(y)dy, x ∈ I.

Clearly, to finish the proof, it is equivalent to prove

wn → pw∗ in C(I ) as n → ∞. (3.2)

From now on, we consider w0 = v0, wn and w∗ as functions defined on I .
For convenience, let us define the map G : C(I ) → C(I ) by setting

G[u](x) =
∫
I
K (x − y + c)g(y)h(w∗(y))u(y)dy, x ∈ I, (3.3)

Using G, (3.2) can be restated as

Gn[w0] → pw∗ in C(I ) as n → ∞. (3.4)

It remains to prove (3.4). It is easy to check that G is strongly positive and compact.
Therefore, we can apply Kreı̌n–Rutman theorem to G. As G[w∗] = w∗ and w∗ ∈
C++(I ), we conclude that r(G) = 1 is an algebraically simple and isolated eigenvalue,
and for any λ ∈ σ(G) with λ �= 1, there holds |λ| < 1. Moreover, as the eigenvalues
of a compact operator can only accumulate at 0, there exist r0 ∈ (0, 1) such that
σ(G)\{1} ⊂ Br0 , where Br0 is the open disk in C centred at 0 with radius r0.

Now, let us consider the Riesz projection P : C(I ) → C(I ) defined by

P[u] = 1

2π i

∫
γ

(ξIC(I ) − G)−1udξ, u ∈ C(I ),

where γ is the Jordan contour that encloses only 1 from σ(G) and IC(I ) is the identity
operator on C(I ). It is known that P is a projection on C(I ), i.e., P2 = P , with range
ran(P) = {αw∗ : α ∈ R} the eigenspace associated to 1, which exhausts all fixed
points of G. Let Q = idC(I ) − P . We know that both ran(P) and ran(Q) = ker(P)

are invariant subspaces of G.
It then follows that

G[w0] = G[P[w0]] + G[Q[w0]] = P[w0] + G[Q[w0]],
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where we used the fact that P[w0] is a fixed point of G. Applying G to the above
equality, we find

G2[w0] = G[P[w0]] + G2[Q[w0]] = P[w0] + G2[Q[w0]].

By iteration, we find

Gn[w0] = P[w0] + Gn[Q[w0]], n ≥ 1.

Denote by GQ the part of G in ran(Q). Then, Gn[Q[w0]] = Gn
Q[Q[w0]] as ran(Q)

is an invariant subspace of G. Since σ(GQ) = σ(G)\{1} ⊂ Br0 , we conclude that
Gn[Q[w0]] → 0 in C(I ) as n → ∞, and hence, Gn[w0] → P[w0] in C(I ) as
n → ∞, which leads to (3.4) with

p = P[w0]
w∗ = P[v0]

w∗ . (3.5)

Note that P is the projection onto the one-dimensional space spanned by w∗. As a
result, P[v0] is simply the function w∗ multiplied by some positive constant, and
hence, p is a positive constant. This completes the proof. ��

Next, we calculate the constant p(v0) in the statement of Theorem 3.1 in the case
of K being a Gaussian probability density function as in (2.12).

Theorem 3.2 Let the assumptions in Theorem 3.1 be satisfied. In addition, let K be
the Gaussian function given in (2.12). Then,

p(v0) =
∫
I v0(x)g(x) f (w∗(x))e

2(c−μ)x
σ2 dx∫

I w∗(x)g(x) f (w∗(x))e
2(c−μ)x

σ2 dx
.

Proof Recall that the operator G is defined in (3.3) and K0 is defined in (2.13). We
calculate

G[u](x) =
∫
I

1√
2πσ

e− (x−y+c−μ)2

2σ2 g(y)h(w∗(y))u(y)dy

=
∫
I

1√
2πσ

e− (x−y)2+2(c−μ)(x−y)+(c−μ)2

2σ2 g(y)h(w∗(y))u(y)dy

= e− (c−μ)x
σ2 e− (c−μ)2

2σ2

∫
I

1√
2πσ

e− (x−y)2

2σ2 e
(c−μ)y

σ2 g(y)h(w∗(y))u(y)dy

= e− (c−μ)x
σ2

∫
I
K0(x − y)e− (c−μ)2

2σ2 g(y)h(w∗(y))e
(c−μ)y

σ2 u(y)dy

= e− (c−μ)x
σ2

∫
I
K0(x − y)ρ(y)e

(c−μ)y
σ2 u(y)dy, x ∈ I,
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where ρ(x) = e− (c−μ)2

2σ2 g(x)h(w∗(x)) for x ∈ I . Multiplying the above equalities by√
ρ yields

√
ρ(x)e

(c−μ)x
σ2 G[u](x) =

∫
I

√
ρ(x)K0(x−y)

√
ρ(y)

[√
ρ(y)e

(c−μ)y
σ2 u(y)

]
dy, x ∈ I.

Defining the operator G̃:

G̃[u](x) =
∫
I

√
ρ(x)K0(x − y)

√
ρ(y)u(y)dy, x ∈ I,

and the multiplication operator M:

M[u](x) = √
ρ(x)e

(c−μ)x
σ2 u(x), x ∈ I,

we find
MG = G̃M. (3.6)

As opposed to the original operator G, the operator G̃ is symmetric if we consider
it as an operator on L2(I ). Since

∫
I

∫
I

√
ρ(x)K0(x − y)

√
ρ(y)dxdy < ∞,

the operator G̃ is a Hilbert–Schmidt operator, in particular, it is a compact operator.
Moreover, the eigenspaces of G̃ span L2(I ). Recall 1 is an algebraically simple and
isolated eigenvalue of G and its eigenspace is spanned byw∗, which is considered as a
function on I . By (3.6),we see that 1 is also an eigenvalue of G̃ withM[w∗] as an eigen-
function. SinceM[w∗] ∈ C++(I ) and the kernel (x, y) �→ ∫

I

√
ρ(x)K0(x−y)

√
ρ(y)

is positive a.e. on I × I , we can apply an infinite-dimensional version of the Perron-
Frobenius theorem (see Sawashima 1964; Marek 1970 or Inaba 2006: Proposition
4.4) that 1 is an algebraically simple and isolated eigenvalue of G̃. Therefore, the
eigenspace of G̃ associated to 1 is spanned by M[w∗]. Moreover, there is r̃0 ∈ (0, 1)
such that σ(G̃)\{1} ⊂ Br̃0 , where Br̃0 is the open disk in C centred at 0 with radius
r̃0. Let P̃ be the orthogonal projection of L2(I ) onto the eigenspace of G̃ associated
to 1, that is, the one spanned byM[w∗], and let Q̃ = IL2(I ) − P̃ , where IL2(I ) is the
identity operator on L2(I ).

By (3.6), we see MG2 = G̃MG = G̃2M, and hence, by iteration, MGn = G̃nM
for all n ∈ N. It then follows that

p(v0)M[w∗] = M[p(v0)w∗] = lim
n→∞M [Gn[v0]

] = lim
n→∞ G̃n[M[v0]].
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Since G̃n[M[v0]] = G̃n[P̃[M[v0]]] + G̃n[Q̃[M[v0]]] → P̃[M[v0]] as n → ∞, we
find

p(v0)M[w∗] = P̃[M[v0]] = 〈M[v0],M[w∗]〉L2(I )

‖M[w∗]‖2
L2(I )

M[w∗],

which leads to the result. ��

3.2 Inside dynamics of general solutions

Now, we consider the general case. Recall that {u∗
n}n is a solution of (1.2) with u∗

0 ∈
C+(R) being non-zero on I . We prove the following result.

Theorem 3.3 Suppose R0 > 1. Let v0 ∈ C+(R) be a portion of u∗
0, that is, 0 � v0 ≤

u∗
0. Consider the solution {vn}n of

vn+1(x) =
∫
R

K (x − y)g(y − cn)h(u∗
n(y))vn(y)dy, x ∈ R

with initial condition v0. Then there exists a constant p := p(v0) ∈ [0, 1] such that

vn(x + cn) → pw∗(x) uniformly in x ∈ R as n → ∞.

Moreover, if, in addition, v0 �≡ 0 on I , then p > 0.

Proof Suppose v0 �≡ 0 on I , otherwise vn ≡ 0 for n ≥ 1. Clearly, wn := vn(· + cn)

satisfies w0 = v0 and

wn+1(x) =
∫
R

K (x − y + c)g(y)h(u∗
n(y + cn))wn(y)dy

=
∫
I
K (x − y + c)g(y)h(u∗

n(y + cn))wn(y)dy, x ∈ R.

Note that it is equivalent to consider the equation on I . Therefore, we considerwn and
u∗
n(· + cn) as functions on I from now on, and hence,

wn+1(x) =
∫
I
K (x − y + c)g(y)h(u∗

n(y + cn))wn(y)dy, x ∈ I.

As obviously {u∗
n(· + cn)}n satisfies

u∗
n+1(x + c(n + 1)) =

∫
I
K (x − y + c)g(y)h(u∗

n(y + cn))u∗
n(y + cn)dy, x ∈ I,

the multiplication of the above equality by constants implies that for each α ∈ R,

wα
n := αu∗

n(· + cn), n ∈ N0
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satisfies

wα
n+1(x) =

∫
I
K (x − y + c)g(y)h(u∗

n(y + cn))wα
n (y)dy, x ∈ I.

Now, we are ready to start an iterative procedure. Note that minx∈I wn(x) > 0 and
minx∈I wα

n > 0 for all n ≥ 1 and α > 0. For convenience, let us also define the map
Gn : C+(I ) → C+(I ) by setting

Gn[u](x) =
∫
I
K (x − y + c)g(y)h(u∗

n(y + cn))u(y)dy, x ∈ I

for n ≥ 1. Then,
wn+1 = Gn[wn] and wα

n+1 = Gn[wα
n ].

Let α1 > 0 be the largest number and β1 > 0 be the smallest number such that

{
w

α1
1 ≤ w1 ≤ w

β1
1 on I,

∃x1, y1 ∈ I s.t. wα1
1 (x1) = w1(x1) and w1(y1) = w

β1
1 (y1).

Assuming none of the above two inequalities is actually an equality (otherwise, we
are done) and applying G1 to obtain

w
α1
2 < w2 < w

β1
2 on I,

where we used the strong positivity of G1. Then, let α2 > α1 be the largest number
and β2 < β1 be the smallest number such that

{
w

α2
2 ≤ w2 ≤ w

β2
2 on I,

∃x2, y2 ∈ I s.t. wα2
2 (x2) = w2(x2) and w2(y2) = w

β2
2 (y2).

Assuming none of the above two inequalities is actually an equality (otherwise, we
are done) and applying G2 to obtain

w
α2
3 < w3 < w

β2
3 on I.

Then, let α3 > α2 be the largest number and β3 < β2 be the smallest number such
that {

w
α3
3 ≤ w3 ≤ w

β3
3 on I,

∃x3, y3 ∈ I s.t. wα3
3 (x3) = w3(x3) and w3(y3) = w

β3
3 (y3).

Clearly, we can repeat the above process to obtain the following:

– an increasing sequence {αn}n ⊂ (0,∞) and a decreasing sequence {βn}n ⊂
(0,∞);

123



Integrodifference equations in the presence of climate…

– for each n, there holds
wαn
n ≤ wn ≤ wβn

n on I (3.7)

with the assumption that none of the above two inequalities is actually an equality
(otherwise we are done);

– for each n, there are xn, yn ∈ I such that

wαn
n (xn) = wn(xn) and wn(yn) = wβn

n (yn). (3.8)

Set
α∞ = lim

n→∞ αn and β∞ = lim
n→∞ βn .

Trivially, α∞ ≤ β∞. If α∞ = β∞, we find

‖wαn
n − wβn

n ‖C(I ) ≤ |αn − βn|‖u∗(· + cn)‖C(I ) → 0 as n → ∞,

where the boundedness of {‖u∗
n(·+cn)‖C(I )}n follows from the fact that u∗

n(·+cn) →
w∗ in C(I ) as n → ∞. The result of the theorem then follows readily from (3.7).
Therefore, it remains to show that α∞ = β∞.

For contradiction, let us assume α∞ < β∞. We are going to find some n0 � 1 and
some 0 < δ0 � 1 such that

wn0 + δ0 ≤ β∞w∗ and ‖wβn0
n0 − β∞w∗‖C(I ) ≤ δ0

2
, (3.9)

which says particularly that wn0 and w
βn0
n0 can not touch, and therefore, contradicts

the second equality in (3.8).
To do so, we write for each n

wn = wn1[wn>β∞w∗] + wn1[wn≤β∞w∗].

Applying Gn to the above equation, we find

wn+1(x) − β∞w∗(x) =
∫

[wn>β∞w∗]
K (x − y + c)g(y)h(u∗

n(y + cn))wn(y)dy

+
∫

[wn≤β∞w∗]
K (x − y + c)g(y)h(u∗

n(y + cn))wn(y)dy

−β∞w∗(x)

=
∫

[wn>β∞w∗]
K (x − y + c)g(y)h(u∗

n(y + cn))wn(y)dy

+
∫

[wn≤β∞w∗]
K (x−y + c)g(y)h(u∗

n(y + cn))β∞w∗(y)dy

−β∞w∗(x)

+
∫

[wn≤β∞w∗]
K (x − y + c)g(y)h(u∗

n(y + cn))[wn(y)
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−β∞w∗(y)]dy
= An+1(x) + Bn+1(x),

where

An+1(x) =
∫

[wn>β∞w∗]
K (x − y + c)g(y)h(u∗

n(y + cn))wn(y)dy

+
∫

[wn≤β∞w∗]
K (x−y+c)g(y)h(u∗

n(y + cn))β∞w∗(y)dy − β∞w∗(x),

Bn+1(x) =
∫

[wn≤β∞w∗]
K (x − y + c)g(y)h(u∗

n(y + cn))[wn(y) − β∞w∗(y)]dy.

For An+1, we can rewrite it as

An+1(x) = A1
n+1(x) − A2

n+1(x) + A3
n+1(x),

where

A1
n+1(x) =

∫
[wn>β∞w∗]

K (x − y + c)g(y)h(u∗
n(y + cn))wn(y)dy,

A2
n+1(x) =

∫
[wn>β∞w∗]

K (x − y + c)g(y)h(u∗
n(y + cn))β∞w∗(y)dy,

A3
n+1(x) =

∫
I
K (x − y + c)g(y)h(u∗

n(y + cn))β∞w∗(y)dy − β∞w∗(x).

Since wn ≤ w
βn
n → β∞w∗, the Lebesgue measure of [wn > β∞w∗] converges to 0

as n → ∞. As

sup
n

sup
x,y∈I

[
K (x − y + c)g(y)h(u∗

n(y + cn))wn(y)
]

< ∞,

we conclude that A1
n+1 → 0 in C(I ) as n → ∞. The same reasoning ensures that

A2
n+1 → 0 in C(I ) as n → ∞. Since u∗

n(· + cn) → w∗ in C(I ) as n → ∞, and

∫
I
K (x − y + c)g(y)h(w∗(y))β∞w∗(y)dy = β∞w∗(x), x ∈ I,

we find that A3
n+1 → 0 in C(I ) as n → ∞. Hence, there holds

An+1 → 0 in C(I ) as n → ∞. (3.10)

It remains to treat Bn+1. We see that
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|wn(x) − wn(z)| ≤
∫
I
|K (x−y+c) − K (z − y + c)|g(y)h(u∗

n(y + cn))wn−1(y)dy

≤ C1

∫
I
|K (x − y + c) − K (z − y + c)|dy.

for some C1 > 0. That is, {wn}n are equi-continuous and have a uniform modulus of
continuity. This together with the first equality in (3.8) and the assumption α∞ < β∞
ensure the existence of intervals In ⊂ I , n � 1 satisfying the following conditions:

– xn is one of the end points of In ;
– In , n � 1 are of equal length, namely, there is 
 > 0 such that |In| = 
 for all
n � 1;

– there exists δ > 0 such that for each n � 1, there holds

wn(x) + δ ≤ β∞w∗(x), ∀x ∈ In .

As In ⊂ [wn ≤ β∞w∗], we deduce

Bn+1(x) ≤
∫
In
K (x − y + c)g(y)h(u∗

n(y + cn))[wn(y) − β∞w∗(y)]dy

≤ −δ

∫
In
K (x − y + c)g(y)h(u∗

n(y + cn))dy, x ∈ I

As u∗
n(· + cn) → w∗ in C(I ) as n → ∞, it is easy to see that

δ1 := lim inf
n→∞ inf

x∈I

∫
In
K (x − y + c)g(y)h(u∗

n(y + cn))dy > 0.

Therefore,

max
x∈I Bn+1(x) ≤ −δδ1

2
, n � 1. (3.11)

Choosing δ0 = δδ1
3 , we conclude from (3.10) and (3.11) that

wn+1(x) − β∞w∗(x) ≤ − δ0, x ∈ I

for all n � 1. Picking a large enough n0 gives the first condition in (3.9). The second
condition in (3.9) follows readily by choosing n0 larger if necessary as w

βn
n → β∞w∗

in C(I ) as n → ∞.
Hence, α∞ = β∞. It then follows from the construction that wn → pw∗ in C(I )

as n → ∞, where p = α∞ = β∞. Equivalently, wn(x) → pw∗(x) uniformly in
x ∈ R as n → ∞. ��

The following result follows readily from Theorem 3.3.
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Corollary 3.4 Suppose R0 > 1. Let {u∗
n}n be an arbitrary solution of (1.2) with

u∗
0 ∈ C+(R) being non-zero on I . Let

u∗
0 =

N∑
i=1

vi0,

where N ≥ 1 and vi0 ∈ C+(R) for each i = 1, . . . , N. For each i = 1, . . . , N, let
{vin}n be the solution of

vin+1(x) =
∫
R

K (x − y)g(y − cn)h(u∗
n(y))v

i
n(y)dy, x ∈ R

with initial condition vi0. Then, for each i = 1, . . . , N, there exists pi ∈ [0, 1] such
that

vin(x + cn) → piw∗(x) uniformly in x ∈ R as n → ∞.

Moreover, there holds
∑N

i=1 p
i = 1.

3.3 Inside dynamics numerical simulations

For the inside dynamics simulations, we use a Beverton–Holt growth function, a
Gaussian dispersal kernel, and an indicator climate envelope from− L

2 to L
2 . Then, the

model that we simulate is given by

vin+1(x) =
∫ L

2 +cn

− L
2 +cn

1√
2πσ 2

e− (x−y−μ)2

2σ2
R

1 + (R−1)
K∗ un(y)

vin(y) dy, x ∈ R.

(3.12)
Four different numerical simulations for (3.12) are provided in Fig. 3 by altering the

speed of the shifting climate envelope. Since the parameter values chosen in Fig. 3a,
c are the same as those in Fig. 1a, b we observe the same overall population level
dynamics with the addition that we can track the individual neutral fractions. The
initial condition was a top hat distribution, occupying the climate envelope of length
L and comprised of eight disjoint neutral fractions, identical in shape. In particular,
we observe the same change of persistence to extinction if c becomes too large due
to the fact that the spread of solutions cannot keep up with the shifting of the habitat.
However, by tracking the neutral fractions, we are able to understand the effect that the
shifting habitat speed has on the genetic composition of the population. By comparing
Fig. 3b–d it appears that a decrease in the speed of the shifting habitat causes an
increase in the genetic composition of individuals from the rear of the population.

However, when we alter the parameters we can also observe different qualitative
behaviour. Figure 4 displays three simulations showing how a decrease in the shifting
habitat speed does not always increase genetic heterogeneity.

In Fig. 4a, the speed of the shifting climate envelope is c = 0.3 which is faster
than the mean dispersal distance μ = 0.2. In this scenario, the neutral fractions at
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Fig. 3 A numerical simulation for (2.19). In all four simulations we use the following parameter values:
R = 1.5, K∗ = 1, μ = 0, σ 2 = 0.02 and L = 1. We only vary the speed of the shifting habitat from a
c = 0.15, b c = 0.1, c c = 0.05, and d c = 0.025

Fig. 4 A numerical simulation for (2.19). In all three simulations we use the following parameter values:
R = 1.5, K∗ = 1, μ = 0.2, σ 2 = 0.02 and L = 1. We only vary the speed of the shifting habitat from a
c = 0.3, b c = 0.2, and c c = 0.1

123



M. A. Lewis et al.

the leading edge have an advantage because it is difficult for the neutral fractions at
the rear to keep up with such a fast shifting habitat. Thus, we can see in Fig. 4a that
the majority of the genetic composition is primarily composed of the three neutral
fractions at the leading edge.

In Fig. 4b, the speed of the shifting climate envelope is the mean of the dispersal
distance (c = μ = 0.2). The shifting habitat at an intermediate speed increases species
evenness. That is, if the climate envelope is not moving too fast or slow relative to the
mean dispersal distance of the population, we see a much more even distribution of
neutral fractions in the population.

In Fig. 4c, the speed of the shifting climate envelope is c = 0.1 and is half the speed
of the mean dispersal distance. Here, we see that neutral fractions at the leading edge
are at a disadvantage because they will outspread the suitable climate envelope. This
is evident in Fig. 4c, by the genetic composition of the population being dominated
by the neutral fractions at the trailing edge of the population.

In order to understand how changing parameters affects the genetic diversity of the
population we use a diversity index. A diversity index is a statistic used to measure the
diversity of a population. One common diversity index is called the Shannon diversity
index (Shannon 1948). Given that pi (v0) is the asymptotic proportion of individuals
in neutral fraction i , then the index can be computed in the following way

H = −
N∑
i=1

pi (v0) log(p
i (v0)) (3.13)

where N is the total number of neutral fractions. Another common diversity index we
use is the Div2 index (Leinster and Cobbold 2012). Given that pi (v0) is the asymptotic
proportion of individuals in neutral fraction i , then the index can be computed in the
following way

Div2 =
(

N∑
i=1

(pi (v0))
2

)−1

(3.14)

where N is the total number of neutral fractions. The Div2 index is the inverse of the
Simpson index,which describes the probability that two individuals sampled randomly
at the same time and location belong to the same neutral fraction (Simpson 1949).

To calculate the proportions, we numerically simulate (3.12) using the fast Fourier
transform, see Sect. 2.5 for details. We run the simulations sufficiently long until
the solution is at equilibrium. Then, we calculate the proportions at the central spatial
location of the suitable domain, cn, where c is the speed of the shifting climate envelope
and n is the number of iterations.We perform this for varied values of L and c to obtain
Fig. 5.

Figure 5 provides two plots similar to that of Fig. 2 except we now compute the
Shannon diversity index for varying parameters L and c. This allows us to understand
the effect of altering the speed and length of the shifting climate envelope. Initial data
were the same as for Fig. 3. For a fixed value of L , we see that in Fig. 5a the diversity
index decreases as c increases while in Fig. 5b we see that the diversity index increases
and then decreases showing that c = μ = 0.2 is the optimal value to maximize the
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Fig. 5 A heat map for the Shannon diversity index of (3.12). In these simulations we use the following
parameter values, R = 1.5, K∗ = 1, σ 2 = 0.02 and a μ = 0 b μ = 0.2

Shannon diversity index. It should be noted that this pattern is observed because
Shannon diversity index increases as the evenness and richness of the population
increases. However, for other diversity indices, the maximum value may not occur
when c = μ = 0.2. To see these differences, a comparison of Fig. 5 using other
diversity indices is provided in “Appendix 4”.

For completeness, we also calculate the Div2 diversity index in Fig. 6 by varying
L and σ 2 to compare to the previous work (Garnier and Lewis 2016), where c∗ is the
rightward asymptotic spreading speed of the following IDE:

un+1(x) =
∫
R

1√
2πσ 2

e− (x−y)2

2σ2
Run(y)

1 + (R−1)
K∗ un(y)

dy, x ∈ R. (3.15)

Moreover, there holds the formula c∗ = √
2σ 2 log R (see e.g. Kot et al. 1996). Notice

that the pattern here shows that for positive c and a fixed value of L , we see that if the
population is persistent there is an increase in the diversity index as c∗ increases. This
is due to the fact that the dispersal variance, σ 2, is varied while the growth rate, R, is
kept constant for c∗.

4 Discussion

Section 1 provides some background material and a brief overview of previous deter-
ministic models for climate envelopes. The model we study for the effect of climate
change on IDEs was introduced in (1.2). In Sect. 1, assumptions made on the dispersal
kernel, growth function, climate envelope, and shifting speed of the environment are
laid out.

Our results begin in Sect. 2, where we outline the global dynamics of (1.2). Theo-
rem 2.3 outlines the persistence criterion for stationary solutions in terms of the basic
reproduction number R0. This result is not new, but for completeness, we include the
proof in “Appendix 4”. Theorem 2.4, provides the persistence criterion for travelling
wave solutions again in terms of the basic reproduction number. A numerical sim-
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Fig. 6 Aheatmap for theDiv2 diversity index of (3.12). In these simulationsweuse the following parameter
values, R = 5, K∗ = 1, μ = 0, σ 2 = (c∗)2/2 log(R) and a c = 0, b c = 2, c c = 5. In particular, we
keep R fixed and vary σ 2. A typical initial condition in the form of the traveling wave solution is given in
d using the parameter values R = 5, K∗ = 1, μ = 0, σ 2 = 100, c = 2, and L = 30

ulation is provided in Fig. 1 showing the two dynamics of extinction (Fig. 1a) and
persistence (Fig. 1b).

We go further and analyze the effect that the size of the climate envelope has in the
calculation of R0. This effect is presented in Theorem 2.6. Here, we assume that the
suitable habitat function is an indicator function on the interval

[− L
2 , L

2

]
and show

that for persistence there is a critical value L∗ such that R0(L) ≤ 1 for L ∈ (0, L∗]
and R0(L) > 1 for L > L∗. A numerical calculation of R0 is provided in Fig. 2. In
Fig. 2a, b we see that for a fixed value of c there is a minimum value of L required for
the population to persist.

We also extend the persistence results by analyzing the effect of the shifting speed of
the environment. The result is given in Theorem 2.8. In this theorem, we must assume
that the dispersal kernel is Gaussian allowing us to show two interesting results for
the persistence of the population with respect to changing the shifting speed c of the
environment. The first persistence result says that there is a critical speed c∗ such that
for c ∈ (0, c∗) there is persistence and for c ≥ c∗ the population goes extinct. This

result holds true for μ ≤ 0 and e− μ2

2σ2 r(F00) > 1. By fixing L in Fig. 2a, we see
this result. The case with μ = 0 corresponds to the reaction–diffusion equation (1.1),
where a unique critical shifting speed separating extinction and persistence is known
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to exist. However, when μ > 0, we see that there exist 0 ≤ c1∗ < c2∗ < ∞ such that
R0 > 1 for c ∈ (c1∗, c2∗) and R0 ≤ 1 for c ∈ (0, c1∗] ∪ [c2∗,∞). That is, there is an
intermediate range of speeds that allow for persistence. This is evident in Fig. 2b by
looking at a fixed value of L . For a stream-dwelling species, μ > 0 means that the
stream drives the species to disperse to the right, and therefore, the species misses the
slowly shifting climate envelope and can not catch up with the fast shifting climate
envelope.

Movingon from thepersistence criterion, the results switchgears into understanding
the inside dynamics of (1.2) in Sect. 3. The first results focus on the inside dynamics
of the travelling wave solution. In Theorem 3.1, we show that if the population is
persistent, then each neutral fraction converges to a proportion of the travelling wave
solution. If we assume that the dispersal kernel is Gaussian, then we can derive an
analytic formula for the proportion of each neutral fraction. This formula is given in
Theorem 3.2 and is dependent on the initial condition, profile of the travelling wave,
shifting speed of the environment, climate envelope function, and dispersal parameters.
Next, the result of Theorem 3.1 is extended to general solutions. In Theorem 3.3 we
show that if the population is persistent, then each neutral fraction converges to a
proportion of the travelling wave solution.

To complement the theoretical results, we provide some numerical simulations for
the inside dynamics. Figure 3 is composed of four different simulations by only varying
the speed of the shifting climate envelope. In Fig. 3a, the speed of the shifting climate
envelope is too fast andwe see that the population does not persist. In the Fig. 3b–d, we
progressively slow down the speed of the shifting climate envelope. The distribution
of the neutral fraction composition changes in each simulation showing that for these
parameter values slowing down the speed of the shifting climate envelope increases
the evenness of the neutral fraction distribution. In Fig. 4, we simply change μ to be
nonzero and see a different kind of pattern. Again, in Fig. 4a–c, we progressively slow
down the speed of the shifting climate envelope. However, at the faster (resp. slower)
speeds, the evenness is biased to the leading (resp. rear) neutral fractions, see Fig. 4a,
c. However, in Fig. 4b, the distribution of neutral fractions is very even among all
types. This suggests that there is a critical speed of the shifting climate envelope at
which the evenness is maximized.

To further explore the assertions from Figs. 3 and 4, we employ the use of the
Shannon diversity index. The diversity measure is calculated for varying values of the
length and the speed of the shifting climate envelope. The heat maps Figs. 3 and 4
about the distributionof neutral fractions. For comparison to previouswork,weprovide
more heat maps for the Shannon diversity index in Fig. 6 by altering the variance in
the dispersal distance of (3.15) and the length of the shifting climate envelope.

The limitations of the model are contingent on the hypotheses made in Sect. 1.
The growth function is assumed to be monotone increasing and does not allow pos-
sibility for an Allee effect. As shown in previous work, the Allee effect is known to
have a strong influence on the genetic patterns formed by expansion (Garnier et al.
2012; Marculis et al. 2017). It is interesting to note that since the climate envelope is
compactly supported that the model allows for fat-tailed dispersal kernels.

Our persistence and travelling wave results provide an extension of those in Zhou
and Kot (2011). The neutral genetic diversity results are new to the study of integrodif-
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ference equationswith a climate envelope. Inmanyways they are similar to those found
by Garnier and Lewis (2016) for reaction–diffusion models. However, there are subtle
differences. For example the diversity index structure of the wave shown in Fig. 6 is
different than that shown in Figure 4 of Garnier and Lewis (2016). We believe that this
arises due to a fundamental difference in the integrodifference and reaction–diffusion
formulations. The integrodifference formulation truncates all populations that disperse
outside the climate envelope within a single time step, whereas the reaction–diffusion
formulation allows for gradual decline of populations that fall outside the climate
envelope. This means that, although the methods for setting up the initial data were
identical for the two formulations, the resulting dynamics have different effects on the
gene fractions that fall outside the climate envelope: the reaction–diffusion formula-
tion allows them to linger whereas the integrodifference formulation truncates them
immediately. This has a concommitant impact on the diversity index, particularly near
the lower (small L) boundary in Fig. 6.

One area for future research is to understand the effects of stochasticity and envi-
ronmental uncertainty on results of the sort given in this paper. Some initial work in
this direction is given in Bouhours and Lewis (2016), but much remains to be done.

Appendix A: Proof of Theorem 2.3

This section is devoted to the Proof of Theorem 2.3. We first present some preparatory
results.

The following lemma is an immediate consequence of the stationary solution equa-
tion.

Lemma A.1 Letw be a stationary solution of (2.2). Thenw ∈ C+(I ). If, in addition,
w �≡ 0, then w ∈ C++(I ).

The next result gives the nonlinear comparison principle.

Lemma A.2 Let w,w ∈ C+(I ) satisfy w ≥ F[w] and w ≤ F[w], respectively. If
w �≡ 0, then w ≥ w.

Proof Clearly, the conditions on w imply that w ∈ C++(I ). We assume that w �≡ 0,
otherwise there is nothing to prove. Define

α∗ := inf
{
α > 0 : αw ≥ w

}
.

By the continuity of w and w, α∗w ≥ w. Moreover, there exists x0 ∈ I such that
α∗w(x0) = w(x0).

We show α∗ ≤ 1 which leads to the result of the lemma. Suppose α∗ > 1 for
contradiction. Clearly,

0 ≥
∫
I
K (x0 − y + c)g(y)

[
α∗ f (w(y)) − f (w(y))

]
dy.
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As there holds

α∗ f (w(y)) = α∗w(y)
f (w(y))

w(y)
> α∗w(y)

f (α∗w(y))

α∗w(y)
= f (α∗w(y)) > f (w(y)), ∀y ∈ I,

where we used (H)-(2), we find∫
I
K (x0 − y + c)g(y)

[
α∗ f (w(y)) − f (w(y))

]
dy > 0,

which leads to a contradiction. ��
The above lemma leads immediately to the uniqueness of non-zero stationary solu-

tion of (2.2).

Corollary A.3 There exists at most one non-zero stationary solution of (2.2).

The following comparison principle for sub- and super-solutions of (2.2) is trivial.

Lemma A.4 Let {wn}n ⊂ C+(I ) and {wn}n ⊂ C+(I ) satisfy wn+1 ≥ F[wn] and
wn+1 ≤ F[wn], respectively. If w0 ≥ w0, then wn ≥ wn for all n.

Now, we are ready to prove Theorem 2.3. We first prove Theorem 2.3(1).

Proof (Proof of Theorem 2.3(1)) Suppose R0 ≤ 1 first. Clearly, 0 is a stationary solu-
tion of (2.2). It remains to show that positive stationary solutions do not exist in this
case. For contradiction, let us suppose the existence of a positive stationary solution
w of (2.2). By Lemma A.1, minI w > 0. By (H)-(2),

f (w(y)) = w(y)
f (w(y))

w(y)
< r0w(y), y ∈ I,

which implies that w(x) < F0[w](x) for all x ∈ I . Therefore, we can find some
δ ∈ (0, 1) such that w ≤ (1 − δ)F0[w]. We then iterate to obtain

w ≤ (1 − δ)nFn
0 [w], ∀n ∈ N.

Recall that φ0 ∈ C++(I ) is the eigenfunction associated to R0. We may assume,
without loss of generality, that w ≤ φ0. It then follows that Fn

0 [w] ≤ Fn
0 [φ0] =

Rn
0φ0 ≤ φ0, which leads to

w ≤ (1 − δ)nφ0, ∀n ∈ N.

This yields w ≡ 0. It is a contradiction.
Now, suppose R0 > 1. By Lemma A.1 and Corollary A.3, it suffices to find one

positive stationary solution of (2.2). To do so, let us consider for ε > 0 the sequence
{wε

n}n defined by

wε
0 = εφ0 and wε

n+1 = F[wε
n], n ∈ N0.
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Let δ0 > 0 be such that R0
1+δ0

> 1. It is clear that R0 = r(F0) ≤ ‖F0‖ ≤ r0 = f ′(0).
Since the limit limε→0+ f (εφ0(x))

εφ0(x)
= f ′(0) is uniform in x ∈ I , we can find some ε0 >

0 such that f (ε0φ0)
ε0φ0

≥ R0
1+δ0

. It then follows the assumption on f that f (εφ0)
εφ0

≥ R0
1+δ0

for all ε ∈ (0, ε0]. We see that

wε
1 =

∫
I
K (· − y + c)g(y)εφ0

f (εφ0)

εφ0
dy ≥ R0

1 + δ0
F0[εφ0] = R0

1 + δ0
εφ0 > εφ0

for all ε ∈ (0, ε0]. It then follows from Lemma A.4 thatwε
n+1 ≥ wε

n for all ε ∈ (0, ε0].
Let us fix any ε ∈ (0, ε0]. By the boundedness of f , it is clear that {wε

n} is uniformly
bounded, and hence, the limit function w∗ := limn→∞ wε

n is well-defined. It is easy
to see that w∗ is a positive stationary solution of (2.2). The upper bound on w∗ as in
the statement is trivial. This completes the proof. ��

We denote by w∗ the unique positive stationary solution of (2.2) when R0 > 1. In
the Proof of Theorem 2.3(1), we have proven the following result.

Corollary A.5 There exists ε0 > 0 such that for any ε ∈ (0, ε0], the sequence
{Fn[εφ0]}n is increasing and converges in C(I ) to w∗ as n → ∞.

Proof We only need to point out that the convergence in C(I ) comes from Dini’s
theorem. ��

Finally, we prove Theorem 2.3(2).

Proof (Proof of Theorem 2.3(2)) For M ≥ supu∈[0,∞) f (u), we have F[M] < M . It
follows that {Fn[M]}n is a decreasing sequence. By Theorem 2.3 and Dini’s theorem,

Fn[M] →
{
0, if R0 ≤ 1,

w∗ if R0 > 1
in C(I ) as n → ∞.

This together with Lemma A.4 yield the result in the case R0 ≤ 1. In the case of
R0 > 1, we can find some ε0 > 0 and M0 > 0 such that ε0φ0 ≤ w1 ≤ M0. We then
conclude the result from Lemma A.4 and Corollary A.5. ��

Appendix B: Comparison of Fig. 5 with other diversity indices

To make a complete analysis of the patterns seen in Fig. 5 we provide similar plots for
different diversity measures. We consider the diversity index

Divq =
(

N∑
i=1

(pi )q
) 1

1−q

. (B.1)
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Fig. 7 A heat map for the Divq diversity index of (3.12) where a q = 0.2, b q = 1, c q = 2, and d q = ∞.
In these simulations we use the following parameter values, R = 1.5, K∗ = 1, σ 2 = 0.02 and μ = 0

Fig. 8 A heat map for the Divq diversity index of (3.12) where a q = 0.2, b q = 1, c q = 2, and d q = ∞.
In these simulations we use the following parameter values, R = 1.5, K∗ = 1, σ 2 = 0.02 and μ = 0.2
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for 0 < q < 1 and 1 < q < ∞. In the limit as q → 1, it can be shown that

Div1 = exp

(
−

N∑
i=1

pi ln(pi )

)
, (B.2)

yielding that Div1 is the exponential of the Shannon diversity index. When q = 0 the
diversity index becomes the species richness and when q = ∞ the diversity index
becomes a measure of species evenness, given by the maximum pi value. In Figs. 7
and 8 we provide plots constructed in the same manner as Fig. 5.
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